r - Error when Fitting a glmer with poisson error structure -


i hope can me. i'm trying conduct analysis examines number of samples of hymenoptera caught on elevational gradient. want examine possibility of uni-modal distribution in relation elevation, linear distribution. hence including i(altitude^2) explanatory variable in analysis.

i trying run following model includes poisson error structure (as dealing count data) , date , trap type (trap) random effects.

model7 <- glmer(no.specimens~altitude+i(altitude^2)+(1|date)+(1|trap),        family="poisson",data=santa.lucia,na.action=na.omit) 

however keep receiving following error message:

error: (maxstephalfit) pirls step-halvings failed reduce deviance in pwrssupdate in addition: warning messages: 1: predictor variables on different scales: consider rescaling  2: in pwrssupdate(pp, resp, tolpwrss, gqmat, compdev, fac, verbose) :   cholmod warning 'not positive definite' @ file:../cholesky/t_cholmod_rowfac.c, line 431 3: in pwrssupdate(pp, resp, tolpwrss, gqmat, compdev, fac, verbose) :   cholmod warning 'not positive definite' @ file:../cholesky/t_cholmod_rowfac.c, line 431 

clearly making big mistakes. can me figure out going wrong?

here structure of dataframe:

str(santa.lucia) 'data.frame':   97 obs. of  6 variables:  $ date        : factor w/ 8 levels "01-sep-2014",..: 6 6 6 6 6 6 6 6 6 6 ...  $ trap.no     : factor w/ 85 levels "n1","n10","n11",..: 23 48 51 14 17 20 24 27 30 33 ...  $ altitude    : int  1558 1635 1703 1771 1840 1929 1990 2047 2112 2193 ...  $ trail       : factor w/ 3 levels "cascadas","limones",..: 1 1 1 1 1 3 3 3 3 3 ...  $ no.specimens: int  1 0 2 2 3 4 5 0 1 1 ...  $ trap        : factor w/ 2 levels "net","pan": 2 2 2 2 2 2 2 2 2 2 ... 

and here complete data.set (these preliminary analyses)

           date trap.no altitude    trail no.specimens trap 1   28-aug-2014      w2     1558 cascadas            1  pan 2   28-aug-2014      w5     1635 cascadas            0  pan 3   28-aug-2014      w8     1703 cascadas            2  pan 4   28-aug-2014     w11     1771 cascadas            2  pan 5   28-aug-2014     w14     1840 cascadas            3  pan 6   28-aug-2014     w17     1929    tower            4  pan 7   28-aug-2014     w20     1990    tower            5  pan 8   28-aug-2014     w23     2047    tower            0  pan 9   28-aug-2014     w26     2112    tower            1  pan 10  28-aug-2014     w29     2193    tower            1  pan 11  28-aug-2014     w32     2255    tower            0  pan 12  30-aug-2014      n1     1562 cascadas            5  net 13  30-aug-2014      n2     1635 cascadas            0  net 14  30-aug-2014      n3     1723 cascadas            2  net 15  30-aug-2014      n4     1779 cascadas            0  net 16  30-aug-2014      n5     1842 cascadas            3  net 17  30-aug-2014      n6     1924    tower            2  net 18  30-aug-2014      n7     1979    tower            2  net 19  30-aug-2014      n8     2046    tower            0  net 20  30-aug-2014      n9     2110    tower            0  net 21  30-aug-2014     n10     2185    tower            0  net 22  30-aug-2014     n11     2241    tower            0  net 23  31-aug-2014      n1     1562 cascadas            1  net 24  31-aug-2014      n2     1635 cascadas            1  net 25  31-aug-2014      n3     1723 cascadas            0  net 26  31-aug-2014      n4     1779 cascadas            0  net 27  31-aug-2014      n5     1842 cascadas            0  net 28  31-aug-2014      n6     1924    tower            0  net 29  31-aug-2014      n7     1979    tower            7  net 30  31-aug-2014      n8     2046    tower            4  net 31  31-aug-2014      n9     2110    tower            6  net 32  31-aug-2014     n10     2185    tower            1  net 33  31-aug-2014     n11     2241    tower            1  net 34  01-sep-2014      w1     1539 cascadas            0  pan 35  01-sep-2014      w2     1558 cascadas            0  pan 36  01-sep-2014      w3     1585 cascadas            2  pan 37  01-sep-2014      w4     1604 cascadas            0  pan 38  01-sep-2014      w5     1623 cascadas            1  pan 39  01-sep-2014      w6     1666 cascadas            4  pan 40  01-sep-2014      w7     1699 cascadas            0  pan 41  01-sep-2014      w8     1703 cascadas            0  pan 42  01-sep-2014      w9     1746 cascadas            1  pan 43  01-sep-2014     w10     1762 cascadas            0  pan 44  01-sep-2014     w11     1771 cascadas            0  pan 45  01-sep-2014     w12     1796 cascadas            1  pan 46  01-sep-2014     w13     1825 cascadas            0  pan 47  01-sep-2014     w14     1840    tower            4  pan 48  01-sep-2014     w15     1859    tower            2  pan 49  01-sep-2014     w16     1889    tower            2  pan 50  01-sep-2014     w17     1929    tower            0  pan 51  01-sep-2014     w18     1956    tower            0  pan 52  01-sep-2014     w19     1990    tower            1  pan 53  01-sep-2014     w20     2002    tower            3  pan 54  01-sep-2014     w21     2023    tower            2  pan 55  01-sep-2014     w22     2047    tower            0  pan 56  01-sep-2014     w23     2068    tower            1  pan 57  01-sep-2014     w24     2084    tower            0  pan 58  01-sep-2014     w25     2112    tower            1  pan 59  01-sep-2014     w26     2136    tower            0  pan 60  01-sep-2014     w27     2150    tower            1  pan 61  01-sep-2014     w28     2193    tower            1  pan 62  01-sep-2014     w29     2219    tower            0  pan 63  01-sep-2014     w30     2227    tower            1  pan 64  01-sep-2014     w31     2255    tower            0  pan 85   03/06/2015    wt47     1901    tower            2  pan 86   03/06/2015    wt48     1938    tower            2  pan 87   03/06/2015    wt49     1963    tower            2  pan 88   03/06/2015    wt50     1986    tower            0  pan 89   03/06/2015    wt51     2012    tower            9  pan 90   03/06/2015    wt52     2033    tower            0  pan 91   03/06/2015    wt53     2050    tower            4  pan 92   03/06/2015    wt54     2081    tower            2  pan 93   03/06/2015    wt55     2107    tower            1  pan 94   03/06/2015    wt56     2128    tower            4  pan 95   03/06/2015    wt57     2155    tower            0  pan 96   03/06/2015    wt58     2179    tower            2  pan 97   03/06/2015    wt59     2214    tower            0  pan 98   03/06/2015    wt60     2233    tower            0  pan 99   03/06/2015    wt61     2261    tower            0  pan 100  03/06/2015    wt62     2278    tower            0  pan 101  03/06/2015    wt63     2300    tower            0  pan 102  04/06/2015    wt31     1497 cascadas            0  pan 103  04/06/2015    wt32     1544 cascadas            1  pan 104  04/06/2015    wt33     1568 cascadas            1  pan 105  04/06/2015    wt34     1574 cascadas            0  pan 106  04/06/2015    wt35     1608 cascadas            5  pan 107  04/06/2015    wt36     1630 cascadas            3  pan 108  04/06/2015    wt37     1642 cascadas            0  pan 109  04/06/2015    wt38     1672 cascadas            5  pan 110  04/06/2015    wt39     1685 cascadas            6  pan 111  04/06/2015    wt40     1723 cascadas            3  pan 112  04/06/2015    wt41     1744 cascadas            2  pan 113  04/06/2015    wt42     1781 cascadas            1  pan 114  04/06/2015    wt43     1794 cascadas            2  pan 115  04/06/2015    wt44     1833 cascadas            0  pan 116  04/06/2015    wt45     1855 cascadas            4  pan 117  04/06/2015    wt46     1876 cascadas            2  pan            

you're there. @bondeddust suggests, it's not practical use two-level factor (trap) random effect; in fact, doesn't seem right in principle either (the levels of trap not arbitrary/randomly chosen/exchangeable). when tried model quadratic altitude, fixed effect of trap, , random effect of date, warned might want rescale parameter:

some predictor variables on different scales: consider rescaling  

(you saw warning mixed in error messages). continuous (and hence worth rescaling) predictor altitude, centered , scaled scale() (the disadvantage changes quantitative interpretation of coefficients, model practically identical). added observation-level random effect allow overdispersion.

the results seem ok, , agree picture.

library(lme4) santa.lucia <- transform(santa.lucia,                          scalt=scale(altitude),                          obs=factor(seq(nrow(santa.lucia)))) model7 <- glmer(no.specimens~scalt+i(scalt^2)+trap+(1|date)+(1|obs),                 family="poisson",data=santa.lucia,na.action=na.omit)  summary(model7)  ## random effects: ##  groups name        variance std.dev. ##  obs    (intercept) 0.64712  0.8044   ##  date   (intercept) 0.02029  0.1425   ## number of obs: 97, groups:  obs, 97; date, 6 ##  ## fixed effects: ##             estimate std. error z value pr(>|z|)    ## (intercept)  0.53166    0.31556   1.685  0.09202 .  ## scalt       -0.22867    0.14898  -1.535  0.12480    ## i(scalt^2)  -0.52840    0.16355  -3.231  0.00123 ** ## trappan     -0.01853    0.32487  -0.057  0.95451    

test quadratic term comparing model lacks ...

model7r <- update(model7, . ~ . - i(scalt^2)) ## convergence warning, ok ... anova(model7,model7r) 

on principle might worth looking @ interaction between quadratic altitude model , trap (allowing different altitude trends trap type), picture suggests won't ...

library(ggplot2); theme_set(theme_bw()) ggplot(santa.lucia,aes(altitude,no.specimens,colour=trap))+     stat_sum(aes(size=factor(..n..)))+         scale_size_discrete(range=c(2,4))+             geom_line(aes(group=date),colour="gray",alpha=0.3)+                 geom_smooth(method="gam",family="quasipoisson",                             formula=y~poly(x,2))+                     geom_smooth(method="gam",family="quasipoisson",                                 formula=y~poly(x,2),se=false,                                 aes(group=1),colour="black") 

enter image description here


Comments

Popular posts from this blog

c# - Validate object ID from GET to POST -

node.js - Custom Model Validator SailsJS -

php - Find a regex to take part of Email -