How to reconstruct with Agda the proof of a theorem produced by one ATP -
i trying prove theorem of differential geometry: cartan structural equation.
i using following code
cnf(axio1,axiom, (w(h(x))= zero)). cnf(axio2,axiom, (w(v(x))= v(x))). cnf(axio2a,axiom, (x= sum(h(x),v(x)) )). cnf(axio3a,axiom, (dw(sum(x,y),z)= sum(dw(x,z),dw(y,z)) )). cnf(axio3,axiom, (dw(x,sum(y,z))= sum(dw(x,y),dw(x,z)) )). cnf(axio4,axiom, (w(sum(x,y))= sum(w(x),w(y)) )). cnf(axio5,axiom, (sum(zero,x)= x )). cnf(axio5a,axiom, (sum(x,sum(y,z))= sum(sum(x,y),z) )). cnf(axio6,axiom, (dw(x,y)= divi(subst(subst(act(x,w(y)),act(y,w(x))),w(commu(x,y))),two) )). cnf(axio6a,axiom, (subst(zero,zero) = 0 )). cnf(axio6b,axiom, (subst(zero,x) = minus(x) )). cnf(axio7,axiom, (act(x,w(v(y)))=zero )). cnf(axio7a,axiom, (act(x,zero)=zero )). cnf(axio8,axiom, (commu(h(x),v(y))=h(z) )). cnf(axio9,axiom, (minus(zero)=zero)). cnf(axio10,axiom, (divi(zero,two) = 0 )). cnf(axio11,axiom, (commu(x,y)=minus(commu(y,x)) )). cnf(axio12,axiom, (w(minus(x))=minus(w(x)) )). cnf(axio13,axiom, (sum(zero,x) = x )). cnf(axio14,axiom, (divi(minus(x),two) =minus(divi(x,two)) )). cnf(axio14a,axiom, (sum(minus(x),x) = 0 )). cnf(axio15,axiom, (w(commu(v(x),v(y))) = commu(v(x),v(y)) )). cnf(axio15a,axiom, ( omega(x,y)=dw(h(x),h(y)) )). cnf(goal,negated_conjecture, (sum(dw(x,y),divi(commu(w(x),w(y)),two))!= omega(x,y) )).
the following atps able produce proof: bliksem, cime, cvc4, e, eqp, fiesta, geo, isabelle, isabelle-hot, leo-ii, matita, metis, otter, prover9, snark, spass, vampire, vampire-sat.
my question is: how reconstruct agda
proof generated mentioned atps?
Comments
Post a Comment